TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>SECTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Objectives</td>
<td>1</td>
</tr>
<tr>
<td>2.0 BACKGROUND</td>
<td>3</td>
</tr>
<tr>
<td>2.1 Site Setting</td>
<td>3</td>
</tr>
<tr>
<td>2.2 Site History</td>
<td>3</td>
</tr>
<tr>
<td>2.3 Release History</td>
<td>4</td>
</tr>
<tr>
<td>2.4 Contaminants of Concern</td>
<td>4</td>
</tr>
<tr>
<td>2.5 Physical Setting</td>
<td>5</td>
</tr>
<tr>
<td>2.6 Geology</td>
<td>5</td>
</tr>
<tr>
<td>2.7 Groundwater Hydrology</td>
<td>5</td>
</tr>
<tr>
<td>2.8 National Historic Preservation Act Compliance Requirements</td>
<td>5</td>
</tr>
<tr>
<td>3.0 SITE ASSESSMENT ACTIVITIES</td>
<td>7</td>
</tr>
<tr>
<td>3.1 Locating the UST, Associated Piping, and Dispenser Island</td>
<td>7</td>
</tr>
<tr>
<td>3.2 Removal activities</td>
<td>8</td>
</tr>
<tr>
<td>3.2.1 Removing the UST, Associated Piping, and Dispenser Island</td>
<td>8</td>
</tr>
<tr>
<td>3.2.2 Off-site Disposal</td>
<td>9</td>
</tr>
<tr>
<td>3.3 Soil Sampling</td>
<td>9</td>
</tr>
<tr>
<td>3.3.1 Field Screening</td>
<td>10</td>
</tr>
<tr>
<td>3.3.2 Soil Sample Collection</td>
<td>10</td>
</tr>
<tr>
<td>3.3.3 Quality Assurance/Quality Control Samples</td>
<td>10</td>
</tr>
<tr>
<td>3.4 Deviations From the Site Assessment Plan</td>
<td>11</td>
</tr>
<tr>
<td>4.0 FINDINGS</td>
<td>13</td>
</tr>
<tr>
<td>4.1 Analytical Data</td>
<td>13</td>
</tr>
<tr>
<td>4.2 Data Verification Report</td>
<td>13</td>
</tr>
<tr>
<td>4.3 Conclusions/recommendations</td>
<td>13</td>
</tr>
<tr>
<td>5.0 REFERENCES</td>
<td>15</td>
</tr>
</tbody>
</table>
TABLES

Table 1 Cal Trans Site Selected Soil Analytical Results ...14

FIGURES

Figure 1 Site Location
Figure 2 Cal Trans Geophysics Anomaly Areas
Figure 3 Site Plan

APPENDICES

Appendix A National Historic Preservation Act Documentation
Appendix B Site Photographs
Appendix C Waste Disposal Documentation
Appendix D Data Verification Report
Appendix E Laboratory Data Package
ACRONYMS AND ABBREVIATIONS

' minutes
° degrees
bgs below ground surface
BIA Bureau of Indian Affairs
BIA Bureau of Indian Affairs
Bristol Bristol Environmental Remediation Services, LLC
BTEX benzene, toluene, ethylbenzene, and xylenes
COC contaminant of concern
DRO diesel-range organics
EDB 1,2-Dibromoethane
EPA U.S. Environmental Protection Agency
GRO gasoline range organics
IDW investigation-derived waste
LEL lower explosive limit
LUST leaking underground storage tank
MS matrix spike
MSD matrix spike duplicate
NAGPRA Native American Graves Protection and Repatriation Act
NHPA National Historic Preservation Act
O₂ oxygen
ORO oil range organics
PCB polychlorinated biphenyls
PID photoionization detector
PQLs practical quantitation limit
QA quality assurance
QC quality control
RCRA Resource Conservation and Recovery Act
RSLs regional screening levels
SVOC semivolatile organic compound
SW EPA solid waste method
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TestAmerica</td>
<td>TestAmerica Laboratories, Inc.</td>
</tr>
<tr>
<td>THPO</td>
<td>Tribal Heritage Preservation Officer</td>
</tr>
<tr>
<td>TPH</td>
<td>total petroleum hydrocarbon</td>
</tr>
<tr>
<td>UST</td>
<td>underground storage tank</td>
</tr>
<tr>
<td>VOC</td>
<td>volatile organic compound</td>
</tr>
<tr>
<td>YTEP</td>
<td>Yurok Tribal Environmental Program</td>
</tr>
</tbody>
</table>
1.0 INTRODUCTION

The U.S. Environmental Protection Agency (EPA) retained Bristol Environmental Remediation Services, LLC (Bristol) to prepare this Site Assessment Report to detail the site assessment activities conducted at a potential leaking underground storage tank (LUST) site on the Yurok Reservation in Weitchpec, California (Figure 1). The site assessment was conducted to evaluate if releases from potential LUSTs have occurred and, if so, to evaluate the type and extent of contamination and recommend corrective actions. The Yurok Tribe is only one of several reservations where Bristol is conducting site assessments on potential LUST sites on Indian Lands throughout EPA Region 9. The EPA assigned this project to Bristol as Work Assignment No. LS-0020 under Contract No. EP-W-07-104.

This report describes the site assessment that was conducted by Bristol on June 21, 2010, at the Cal Trans (also known as the former Brizard’s Store) potential LUST site. Information presented includes a description of activities conducted, as well as file information, photographic documentation, site conditions, sample locations, analytical results, and recommendations for further action.

Except where noted, field activities were conducted in accordance with the requirements in the Site Assessment Plan (Bristol, 2010a), Quality Assurance Plan (Bristol, 2010b), and Site Health and Safety Plan (Bristol, 2010c) prepared by Bristol.

1.1 OBJECTIVES

The primary objective of the project was to conduct a site assessment and/or corrective action to evaluate the presence of petroleum hydrocarbon releases into the soil and groundwater. To verify if a release occurred at the site, all underground storage tank (UST), piping, and dispenser islands were to be removed to allow sampling beneath.
(Intentionally blank)
2.0 BACKGROUND

The following section presents the background of the site, including site setting, site history, contaminants of concern (COCs), physical setting, groundwater hydrology, and release history.

2.1 SITE SETTING

The Cal Trans site (also known as the Former Brizard’s Store, and as the EPA Facility Identification YURO 005) is located on the Yurok Indian Reservation in Weitchpec, California (Figure 1). The site is located on the east side of State Route 169, just south of the turnoff for Weitchpec Road, at latitude 41 degrees (°) 11 minutes (’) 18.06 seconds (") north, longitude 123° 42' 30.82" west. It is a former village site. Currently, the area around the site is used for residential purposes. The grounds associated with the former village are sacred. A ceremonial dance area and two fenced graveyards are located directly across the highway (Highway 169) from the site.

2.2 SITE HISTORY

The only available records on the site, which were obtained from the Humboldt County Assessor’s office and date back to 1956, indicate that a store called “Brizard’s” originally operated at the site. The store was in business from the early 1900s until sometime before the 1970s, and operated two 500-gallon USTs.

The Bureau of Indian Affairs (BIA) first leased the land to Thelma McLaughlin (mother of current resident) on September 19, 1974. The Yurok Tribe took over the land from BIA in 1988. Lonny and Terry McLaughlin (current residents) took over the lease around the same time. Gas pumping operations stopped well before the 1970s. It is not known when the UST was taken out of operation. According to EPA records, the former Brizard’s Store sold gasoline and burned down in the 1950s.

In 2005, Spectrum Geophysics (Spectrum) conducted an electromagnetic geophysical survey at the site during the course of a Preliminary Site Investigation for a nearby highway improvement project. The geophysical survey identified the location of two potential USTs, identified as Anomaly A and Anomaly B (Figure 2).
Geocon Consultants, Inc. (Geocon) followed up on Anomaly A by manual digging, and identified piping and a UST near the former dispenser/Anomaly A location. The Anomaly A UST was found to be located on or near the shoulder of Highway 169. The top of the UST was reported to have been found approximately 3.5 feet below ground surface (bgs), the diameter of the UST was measured at approximately 40 inches, and approximately 32 inches of fuel having a gasoline odor was reportedly present. The length of the UST was not determined, and so the capacity of the UST and the volume of the liquid present in the UST was unknown.

Anomaly B is located within the footprint of the former Brizard’s Store. The anomaly was reported as possibly being a fuel UST, septic tank, metal debris from the burned building, or other material. The report showed Anomaly B as being the weaker of the two anomalies.

2.3 Release History

Because of the lack of records on the site, the history of petroleum releases is unknown. The Caltrans Report (March 2005) by Geocon-Preliminary Site Investigation provided information on the potential sources of contamination at the site. The report found one UST and piping with product in them, and one UST was suspected to be within the footprint of the old store. There was also confirmed lead in soil, and the highest level detected was near the anomaly of the suspected UST.

2.4 Contaminants of Concern

The primary COCs at the site are petroleum hydrocarbons. The specific COCs related to gasoline storage include volatile organic compounds (VOCs), such as benzene, toluene, ethylbenzene, and xylenes (BTEX), 1,2-Dibromoethane (EDB), total petroleum hydrocarbons (TPH) (specifically gasoline range) and Resource Conservation and Recovery Act (RCRA) 8 Metals, such as lead and chromium. Due to the age of the site, it was assumed that the gasoline stored in the UST was leaded gasoline. Consequently, soil samples collected during the site assessment were to have been analyzed only for VOCs, TPH (gasoline range), and RCRA 8 Metals.
If during the assessment it was suspected that the UST may have contained diesel and/or used oil, then the soil samples were to also have been analyzed for semivolatile organic compounds (SVOCs), TPH (diesel range and oil range), and polychlorinated biphenyls (PCBs).

2.5 PHYSICAL SETTING

The site appeared as a vacant lot adjacent to State Route 169 (Figure 3). The infrastructure remaining on the site, immediately prior to site assessment activities, included one small dispenser island. The site grounds consisted primarily of weeds. Brush piles and miscellaneous debris (such as a pickup bed topper) were present at the site as were several large boulders, which were located along the southeastern portion of the site.

During a February 2009 site visit, Bristol observed a mobile home on the southeastern end of the site and a wooden fence that paralleled the highway and extended approximately 30 feet from the southeastern edge of Anomaly A toward the mobile home. Sometime between the February 2009 site visit and the June 2010 site assessment, the mobile home and fence had been removed, and the boulders that are present at the site had been emplaced.

2.6 GEOLOGY

A sandy silt with gravel and cobbles was encountered at the site during site assessment activities. Bedrock was not encountered there.

2.7 GROUNDWATER HYDROLOGY

Groundwater was not encountered during excavation activities at the site, and depth to groundwater was not determined in the field. Based on topography, the direction of groundwater flow may be toward the south. Potential receptors include the Klamath River, located approximately 750 feet south of the site. Weitchpec Creek, approximately 100 feet from the site, feeds into the Klamath River.

2.8 NATIONAL HISTORIC PRESERVATION ACT COMPLIANCE REQUIREMENTS

Before site work could commence at this culturally sensitive site, several requirements had to be met. Included in Appendix A are several documents providing approval and/or procedures that were followed during the course of the site assessment:
• The Yurok Protocol for Inadvertent Discovery, which includes procedures for notifying the Yurok Tribe of an inadvertent discovery of human remains, associated and/or unassociated funerary items, and cultural items.

• The Native American Graves Protection and Repatriation Act (NAGPRA) Plan of Action, which addresses the treatment of NAGPRA cultural items, as well as examples of objects considered as cultural items.

• The Tribal Heritage Preservation Officer (THPO) Concurrence Letter, in which the EPA has made a final determination of effect for the proposed site work per National Historic Preservation Act (NHPA) Section 106 of: No Adverse Effect With Conditions. This determination was made following review of the study “Cultural Resources Inventory and Determination of Eligibility of the Weitspus Traditional Cultural Property for the EPA Weitchpec Underground Storage Tank Removal Project” conducted by Ms. Katherine Sloan of the Yurok Tribe Environmental Program (YTEP). Mr. Robert B. McConnell, THPO, concurred with the EPA letter.

• Yurok Tribe Cultural Resources Management Permit Application Package – Submitted by the EPA to THPO for NHPA Section 106 Determination of Effect.

All documents present in Appendix A were followed by all workers on site. A cultural anthropologist was present during site assessment activities in case items of cultural significance were discovered.

All soil removed from the excavation, with the exception of less than one cubic yard of potentially petroleum-contaminated soil, was returned to the excavation. No items of cultural significance were discovered at the site.
3.0 SITE ASSESSMENT ACTIVITIES

Site assessment activities performed on June 21, 2010, included:

- Locating 1 UST, associated piping, and 1 dispenser island;
- Removing 1 UST, associated piping, and 1 dispenser island;
- Collecting soil samples from beneath the former dispenser location and from beneath the ends of the UST; and
- Transporting investigation-derived waste (IDW), including one UST, piping, and potentially petroleum-contaminated soil for recycling, treatment, or disposal to an approved off-site facility.

Field activities are documented in site photographs (Appendix B).

3.1 LOCATING THE UST, ASSOCIATED PIPING, AND DISPENSER ISLAND

As explained in Section 2.2 of this report, Spectrum conducted an electromagnetic geophysical survey at the site in 2005. Based on the information contained in their report, as well as the information contained in the subsequent Geocon report, Bristol scanned the site for buried metallic objects using a Schonstedt-brand magnetic locator.

The only location where the locator signaled the presence of metal was in the area identified in the geophysics investigation as Anomaly A. The location of the UST, as well as the location of the two pipes that ran from the UST to the dispenser island, were then flagged by Bristol. A backhoe was used to uncover the dispenser island; the length of the piping running from the dispenser island to the UST was then uncovered by backhoe and by shovel. The top of the UST was uncovered using the backhoe.

The two pipes were found at a depth of approximately 1.5 feet bgs. Both pipes originated at the dispenser island, were parallel and adjacent to each other, and approximately five feet in length. The vent pipe ended at the UST at a horizontal tee. The dispenser pipe was connected to a vertical pipe, which led into the UST. The top of the UST was approximately 2.5 feet bgs, and the bottom of the UST was approximately 6.5 feet bgs. The length of the UST measured at 46 inches, and the diameter measured at 72 inches. The volume of the UST was calculated to be 500 gallons.
Bristol thoroughly scanned the Anomaly B area for metal using the magnetic locator. There were no indications of metallic objects in the area. A test trench, approximately 18 feet long, two feet deep, and two feet wide, was dug between the Anomaly A and Anomaly B areas to ensure that there were no dispenser pipes running from the dispenser island to the southeast to a potential UST in the Anomaly B area. No pipes, USTs, or other metallic objects were found during trenching activities. The trench was then backfilled with the soil that had been excavated.

3.2 REMOVAL ACTIVITIES

3.2.1 Removing the UST, Associated Piping, and Dispenser Island

Excavation and infrastructure removal activities included the removal of one dispenser island and associated piping. The dispenser island was approximately six feet in length, severely deteriorated, and easily broken and removed. The piping was rusty and contained no liquid. There were no joints present in the piping other than those located at the ends beneath the dispenser island and at the UST.

The UST was found to be severely corroded and very thin. A hole, resulting from corrosion or possibly from a backhoe bucket tooth, was present in the top of the UST. A liquid having the slight odor of weathered gasoline or possibly diesel, was detected in the UST. Approximately 180 gallons of liquid having a brownish color was pumped from the UST and transferred to 55-gallon drums for transport and disposal. There was no indication of the presence of product or sheen on the liquid that was removed from the UST.

Following removal of the liquid, the inside of the UST was rinsed with a power washer three times and pumped after each rinsing. The rinse water was transferred to 55-gallon drums for transport and disposal. Following the final pumping, oxygen (O₂) and lower explosive limit (LEL) were measured at various depths in the UST to ensure that no combustible vapors were present before the UST was removed from the ground. The oxygen concentration was found to be 19.9 percent and the LEL was found to be 2 percent. The readings were within the acceptable ranges specified in the work plan.
After the interior of the UST had been cleaned, a backhoe was used to remove the soil from both sides as well as the northeast end of the UST so that the UST could be removed from the ground. The soil was temporarily stockpiled on site to be used later for backfill. The soil was screened using a photoionization detector (PID) as it was removed from the excavation and no contamination was detected. Because of the deteriorated condition of the UST, it could not be transported whole on a trailer. Instead, the backhoe bucket was used to crush the UST on site, and the UST was placed in the back of a flatbed truck, along with the piping and other IDW.

3.2.2 Off-site Disposal

IDW generated from the site assessment included the UST, piping, liquid initially present in the UST and rinse water from the UST, concrete from the dispenser island, minor amounts of contaminated soil and scale, and miscellaneous materials such as sample gloves.

The IDW was removed from the site by NCR Environmental Services, Inc., and transported to General Environmental Management of Rancho Cordova, LLC, located in Rancho Cordova, California. Disposal documentation is provided in Appendix C.

3.3 Soil Sampling

All soil samples collected for laboratory analysis were submitted to TestAmerica Laboratories, Inc. (TestAmerica) in Phoenix, Arizona. Analytes and analytical methods for the soil samples included VOCs by EPA Solid Waste Method (SW) 8260B and TPH by EPA Method 8015B. EDB and BTEX were included in the SW8260B analyses. TPH was reported as gasoline range organics (GRO), diesel range organics (DRO), and oil range organics (ORO). In addition, samples were analyzed for RCRA 8 Metals by SW6010B (Mercury by 7471A), SVOCs by SW8270C, and polychlorinated biphenyls (PCBs) by SW8082. It was not originally planned that the analysis would include SVOCs and PCBs. However, because the liquid in the UST had a slight diesel odor, and because the work plan called for the addition of the analytes should it be suspected that the UST may have contained diesel and/or used oil, Bristol determined that these analyses should be included. The YTEP’s director concurred with the decision.
3.3.1 Field Screening

Grab samples of soil were collected from beneath the ends of the UST for field screening purposes. Grab samples were also collected beneath the former fuel dispenser where the two pipes terminated (Figure 3). Additionally, field screening samples were collected from the excavated soil.

Bag headspace VOC concentrations were measured, using a RAE Systems MiniRAE 3000 PID, by placing the loose soil in labeled plastic Ziploc® bags. The bags were sealed, the soil was agitated, and the PID probe was inserted into each bag to obtain measurements of the total VOC concentrations.

3.3.2 Soil Sample Collection

Three soil samples (Yurok1, Yurok2, and Yurok3) and one duplicate soil sample (Yurok4) were collected for laboratory analysis. One soil sample was collected from beneath each of the ends of the UST, one soil sample was collected from beneath the dispenser island, and one duplicate sample was collected (Figure 3). The soil samples collected from beneath the ends of the UST were collected from a depth of two feet beneath the UST, and the soil sample collected from beneath the dispenser island was collected from a depth of two feet beneath the end of the dispenser pipe. Soil samples were submitted to TestAmerica in Phoenix for analysis.

Approved sampling protocols were followed during sampling.

Beneath the northeast end of the UST, which is the end of the UST where both pipes from the dispenser island terminated, a possible stained area was observed in the soil. As a precaution, a minimal amount of soil was removed and disposed of along with the UST contents. The sample (Yurok3) collected in this area was collected from approximately two feet beneath the potentially stained area.

3.3.3 Quality Assurance/Quality Control Samples

Quality Assurance/Quality Control (QA/QC) samples collected during sampling activities at the site consisted of a duplicate sample, matrix spike, and matrix spike duplicate (MS/MSD).
Laboratory-prepared method blanks, laboratory control samples, and laboratory control sample duplicates were also part of the QA/QC program.

Field duplicates were to be collected at a rate of 10 percent, and MS/MSD pairs were to be collected at a rate of 5 percent. The field duplicate percentage and the MS/MSD percentage were both met.

QA/QC analytical results are discussed in the Data Verification Report presented in Appendix D. The laboratory data package is presented in Appendix E.

3.4 DEVIATIONS FROM THE SITE ASSESSMENT PLAN

No deviations were noted.
4.0 FINDINGS

The following section presents the findings of the site assessment, including analytical data, a summary of the data verification report, and a summary of the nature and extent of contamination.

4.1 ANALYTICAL DATA

Concentrations of BTEX, GRO, DRO, VOCs, SVOCs, and PCBs were not detected at concentrations above practical quantitation limits (PQLs) in any of the soil samples submitted to the laboratory for analysis (Table 1 and Appendix E). The metals barium, chromium, lead, and mercury were detected at concentrations above PQLs, but at concentrations that were below action levels.

4.2 DATA VERIFICATION REPORT

The data verification found most data usable as delivered by the analytical laboratories. Some data required qualification, and have been flagged appropriately. Data are presented with appropriate qualifiers on Table 1 and in the Data Verification Report presented in Appendix D.

4.3 CONCLUSIONS/RECOMMENDATIONS

Based on the data gathered at the site and analytical results from soil samples collected, soil at the site does not contain any COCs at concentrations above EPA regional screening levels (RSLs).

Based on the data gathered at the site and analytical results from soil samples collected at the site, all COCs in soils remaining on the site were below RSLs. It is recommended that no further action be taken at the site at this time.
Table 1 Cal Trans Site Selected Soil Analytical Results

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Location</th>
<th>Depth</th>
<th>PID</th>
<th>GRO</th>
<th>DRO</th>
<th>ORO</th>
<th>Benzene</th>
<th>Ethylbenzene</th>
<th>Toluene</th>
<th>Xylenes, total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Method:</td>
<td>EPA 8015B</td>
<td>EPA 8015B</td>
<td>EPA 8015B</td>
<td>SW8260B</td>
<td>SW8260B</td>
<td>SW8260B</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Units:</td>
<td>mg/kg</td>
<td>mg/kg</td>
<td>mg/kg</td>
<td>mg/kg</td>
<td>mg/kg</td>
<td>mg/kg</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>EPA RSL¹:</td>
<td>83*</td>
<td>83*</td>
<td>370*</td>
<td>1.1</td>
<td>5.4</td>
<td>520</td>
</tr>
<tr>
<td>Yurok1</td>
<td>Dispenser</td>
<td>3.5</td>
<td>2.3</td>
<td>ND (24)</td>
<td>ND (30)</td>
<td>ND (90) J</td>
<td>ND (0.068)</td>
<td>ND (0.068)</td>
<td>ND (0.068)</td>
<td>ND (0.068)</td>
</tr>
<tr>
<td>Yurok2</td>
<td>Tank</td>
<td>8.5</td>
<td>1.0</td>
<td>ND (24)</td>
<td>ND (30) J</td>
<td>ND (91) J</td>
<td>ND (0.060)</td>
<td>ND (0.060)</td>
<td>ND (0.060)</td>
<td>ND (0.060)</td>
</tr>
<tr>
<td>Yurok3</td>
<td>Tank</td>
<td>8.5</td>
<td>2.0</td>
<td>ND (24)</td>
<td>ND (30) J</td>
<td>ND (89) J</td>
<td>ND (0.060)</td>
<td>ND (0.060)</td>
<td>ND (0.060)</td>
<td>ND (0.060)</td>
</tr>
<tr>
<td>Yurok4†</td>
<td>Tank</td>
<td>8.5</td>
<td>NA</td>
<td>ND (26)</td>
<td>ND (29)</td>
<td>99 J</td>
<td>ND (0.058)</td>
<td>ND (0.058)</td>
<td>ND (0.058)</td>
<td>ND (0.058)</td>
</tr>
</tbody>
</table>

Notes:
The analytical laboratory was TestAmerica Laboratories, Inc. in Phoenix, Arizona.
All depths in feet below ground surface.
*Based on groundwater as a current or potential source of drinking water from Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater (May 2008), California Regional Water Quality Board, San Francisco Bay Regional Water Quality Control Board, California EPA Website: http://www.waterboards.ca.gov/sanfranciscobay/esl.shtml.
† Duplicate sample of Yurok3
¹EPA Region 9 RSL Table (December 2009)

DRO = diesel range organics
EPA = U.S. Environmental Protection Agency
GRO = gasoline range organics
ID = sample identification
J = estimated value
JL = estimated value with low bias
mg/kg = milligrams per kilogram
NA = not applicable
ND = not detected at concentrations exceeding the PQL (shown in parentheses)
ORO = oil range organics
PID = photoionization detector
PQL = practical quantitation limit
RSL = Regional screening level
SW = EPA Solid Waste Method
5.0 REFERENCES

Bristol Environmental Remediation Services, LLC (Bristol). 2010a (March). *Site Assessment Plan for LUST Sites in Indian Country.*

Bristol. 2010b (March). *Quality Assurance Project Plan for LUST Site Assessments in Indian Country.*

Bristol. 2010c (March). *Site Health and Safety Plan for LUST Site Assessments in Indian Country.*

(Intentionally blank)
FIGURES

Figure 1 Site Location
Figure 2 Cal Trans Geophysics Anomaly Areas
Figure 3 Site Plan
FIGURE 2
YUROK TRIBE (YURO 005)
WEITCHPEC, CALIFORNIA
CAL TRANS GEOPHYSICS ANOMALY AREAS

SOURCE:
SPECTRUM GEOPHYSICS,
FIGURE 1, AREA OF GEOPHYSICAL INVESTIGATION
DATE: 02/10/2005

NOT TO SCALE

Bristol
ENVIRONMENTAL REMEDIATION SERVICES, LLC
Phone (907) 563-0013 Fax (907) 563-6713
Project No. 410057
Table 1

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Depth (ft)</th>
<th>PID</th>
<th>GRO (mg/kg)</th>
<th>ORO (mg/kg)</th>
<th>Ethylbenzene (mg/kg)</th>
<th>Toluene (mg/kg)</th>
<th>Xylenes (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yurok 1</td>
<td>3.5</td>
<td>2.3</td>
<td>ND (24)</td>
<td>ND (30)</td>
<td>ND (90)</td>
<td>ND (0.006)</td>
<td>ND (0.008)</td>
</tr>
<tr>
<td>Yurok 2</td>
<td>8.5</td>
<td>1.0</td>
<td>ND (24)</td>
<td>ND (30)</td>
<td>ND (91)</td>
<td>ND (0.000)</td>
<td>ND (0.000)</td>
</tr>
<tr>
<td>Yurok 3</td>
<td>8.5</td>
<td>2.0</td>
<td>ND (24)</td>
<td>ND (30)</td>
<td>ND (89)</td>
<td>ND (0.000)</td>
<td>ND (0.000)</td>
</tr>
<tr>
<td>Yurok 4†</td>
<td>8.5</td>
<td>NA</td>
<td>ND (26)</td>
<td>ND (29)</td>
<td>99</td>
<td>ND (0.058)</td>
<td>ND (0.058)</td>
</tr>
</tbody>
</table>

Notes:
- The analytical laboratory was Test America in Phoenix, Arizona.
- All depths in feet below ground surface.
- Based on groundwater as a current or potential source of drinking water.
- EPA Region 9 RSL Table (December 2009)
- Soil samples were also analyzed for semi-volatile organics, polychlorinated biphenyls, and metals. All results were ND or at low (metals) concentrations.

†= Indicates duplicate sample. Yurok4 is a duplicate of Yurok3.
APPENDIX A

National Historic Preservation Act Documentation
Yurok Tribe
APPENDIX B

Site Photographs
Photo 01: Cal Trans site prior to UST removal. Highway 169 is in the foreground.
Direction: North

Photo 02: Uncovering the piping that connected the UST to the dispenser island (foreground).
Direction: South
Photo 03: Removing soil from the northwest side of the UST. Note the far end of the pipe where the dispenser island was located.
Direction: North
Date: 6/21/10
Photographer: S. Ruth

Photo 04: Removing contents of the UST. Followed by triple rinsing and final pumping.
Direction: North
Date: 6/21/10
Photographer: S. Ruth
Photo 05: Removing the empty, badly deteriorated UST following removal of contents and triple rinsing. Date: 6/21/10 Photographer: S. Ruth

Direction: Northeast

Photo 06: UST excavation after UST removal and prior to backfilling. Date: 6/21/10 Photographer: S. Ruth

Direction: Northeast
Photo 07: Checking for artifacts in the test trench.
Direction: Southwest
Date: 6/21/10
Photographer: S. Ruth

Photo 08: Site following assessment activities and final grading.
Direction: Northeast
Date: 6/21/10
Photographer: S. Ruth
APPENDIX C

Waste Disposal Documentation
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ERK 061015003</td>
<td></td>
<td>800-337-7455</td>
<td>005301298 JJK</td>
</tr>
</tbody>
</table>

5. Generator's Name and Mailing Address
 - Tulelake Tribe Reservation
 - 23000 Shasta Hwy 96
 - Tulelake, CA 96130

6. Transporter 1 Company Name
 - NBC Environmental Services Inc.

7. Transporter 2 Company Name
 - U.S. EPA ID Number

8a. U.S. DOT Description (including Proper Shipping Name, Hazard Class, ID Number, and Packing Group if any)
 - 2. AD Waste Gasoline Mixture, B
 - UN1203, 6.1 (ODI)
 - 2. Non-RCRA Hazardous Waste Solid (Petroleum contamination/trace hydrocarbons)

10. Containers
 - No. | Type | Quantity | Unit
 - 005 | DM | 240 | g
 - 001 | OM | 0400 | g

14. Special Handling Instructions and Additional Information
 - JOSA S1877
 - 961.5 x 55gal, liquid, Prod No. NMC003, DM # TIB-01
 - 462 x 1 x 60 gal, solid, Prod No. NMC001, DM #

16. Transporter Signature (for exports only)
 - Chris Neal

17. Transporter Acknowledgment of Receipt of Materials
 - Signature

18. Discrepancy
 - Discernment: Quantity Type
 - Discernment: Residue Partial Rejection Full Rejection

19. Hazardous Waste Report Management Method Codes (i.e., codes for hazardous waste treatment, disposal, and recycling systems)
 - Method Code 1
 - Method Code 2
 - Method Code 3

20. Designated Facility Owner or Operator: Certification of receipt of hazardous materials covered by the manifest except as noted in Item 18a
 - Printed/Typed Name
 - Signature

EPA Form 8700-22 (Rev. 3-05) Previous editions are obsolete.
A. GENERATOR INFORMATION:
Generator Name:
Facility Address: 23001 St, Hwy 94
City: Hoopa, State: CA, Zip 95546
Customer Name:
Customer Phone:
Customer Fax:
Generator USEPA/Federal ID #: J812 08/10/2003
Generator's S.I.C. Code (4 Digit):

BILLING INFORMATION:
Bill: NRC Environmental Services, Inc
Attn: Mr. Alex Neel
Bill: 1111 Marauder Street
Bill: Chico, California 95973

B. WASTE STREAM INFORMATION:
Name of the Waste: Debris contaminated with trace Hydrocarbons
Original Process Generating Waste: SRF & Plastic, also contaminated with cleaner, solution & trace Hydrocarbons from cleaning of a CSTR
Is it a Lab-Pack? Yes No
Is a representative sample provided? Yes No
Is a MSDS attached? Yes No
Is there any Analysis attached? TCLP Yes No

C. GENERAL CHARACTERISTICS:
Color: White/Clear
Physical state @ 70 F

<table>
<thead>
<tr>
<th>Odor</th>
<th>% Liquid</th>
<th>% Sludge</th>
<th>% Gas (Other)</th>
<th>% Powder</th>
<th>% Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Mild</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Strong</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

PH: <2.0

<table>
<thead>
<tr>
<th>Liquid Flash point</th>
<th>73 F</th>
<th>73 to 99 F</th>
<th>100 to 139 F</th>
<th>140 to 200 F</th>
<th>>200 F</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td><73 F</td>
<td><73 to 99 F</td>
<td><100 to 139 F</td>
<td>>125</td>
</tr>
</tbody>
</table>

Specific Gravity: 1

<table>
<thead>
<tr>
<th>Phases</th>
<th>Btu/lb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single layer</td>
<td><3000</td>
</tr>
<tr>
<td>Multi layer</td>
<td>3000-5000</td>
</tr>
<tr>
<td>How Many?</td>
<td>5000-10,000</td>
</tr>
<tr>
<td>>10,000</td>
<td></td>
</tr>
</tbody>
</table>

D. CHEMICAL COMPOSITION:

<table>
<thead>
<tr>
<th>Constituents</th>
<th>Min %</th>
<th>Max %</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRF</td>
<td>10</td>
<td>50</td>
</tr>
<tr>
<td>Plastics</td>
<td>0</td>
<td>5</td>
</tr>
</tbody>
</table>

E. OTHER WASTE STREAM INFORMATION:
Is this waste "Used Oil"? Yes No
If "Yes", does the oil contain Polychlorinated Biphenyls? Yes No
If PCB'S are present, is the waste regulated by TSCA per 40 CFR 761?
Does the total halogen content exceed 1,000 ppm? Yes No
If "Yes", can you identify the "chlorinated constituent" present in the oil?
Does the Waste have any of the following characteristics? (Please check all that apply)

- Oxidizer
- Organic Peroxide
- Water Reactive
- Air Reactive
- Pyrophoric
- Dioxin
- Radioactive
- Infectious
- Pathogen
- Carcinogen
- Etiological
- Cyanides
- Explosive
- Shock Sensitive
- Undergo Hazardous Polymerization
- Cylinder
- Aerosols
F. OTHER WASTE STREAM INFORMATION CONTINUED:
Is this Waste subject to RCRA Subpart CC controls? (40 CFR 265 SUBPART CC) ___ Yes X No
If “No”, does the Waste meet the organic LDR exemption for UHC’S? (40 CFR 268.48, 268.7) ___ Yes ___ No NA
If “No”, does the Waste contain <500ppm volatile organic (VOC)? (40 CFR 265 SUBPART CC) ___ Yes ___ No ___ Yes X No
Does the Waste contain Class I or Class II ozone depleting substances? ___ Yes ___ No

G. WASTE CHARACTERIZATION:
Is this a Non-RCRA (California-Only) “Hazardous Waste” per 22 CCR 66264? ___ Yes ___ No
If “Yes”, please list all applicable State Waste Code(s): _______________ 357 X ___ Yes ___ No
Is this a RCRA “Hazardous Waste” per 40 CFR? ___ Yes ___ No
If “Yes”, please list all applicable EPA Waste Code(s): _______________ ___ Yes ___ No
Is this a “Universal Waste”? ___ Yes ___ No

H. DOT SHIPPING INFORMATION:
Is this a U.S. Department of Transportation (USDOT) Hazardous Material? ___ Yes X No
Proper Shipping Name per 49 CFR 172.101 Hazardous Materials Table: ________________ Non RCRA Hazardous Waste Solid (Permits Debris Contaminated soil Trace Hydrocarbons)
Reportable Quantity (if any) ___ lbs 0
Hazard Class or Division No. _____ UN/NA# ____________ Packing Group: ________
Is this a “Poisonous Inhalation Hazard”? ___ Yes ___ No
If “Yes”, please indicate Hazard Zone __ Zone A ___ Zone B ___ Zone C ____ Zone D __ Other ______
List two primary hazardous constituents: ____________

I. COMMENTS:

J. GENERATOR CERTIFICATION:
I hereby certify that the above and attached description is complete and accurate to the best of my knowledge and ability. No deliberate or wilful omissions of composition or properties exist and that all known or suspected hazardous constituents have been disclosed. I also certify that the obtained sample is representative of the waste material described above and give GEM permission and consent to make amendment and corrections.
Name (print) Jack Biondi ___ Title President ___
Signature _______________ Date 06/24/10 ___

THIS SPACE FOR GEM LLC APPROVALS DEPARTMENT ONLY
DATE RECEIVED ___ / ___ / ___ APPROVER’S NAME ____________________________
PROCESS CODE _____ PRICE _______ UNIT OF MEASURE __________
PROFILE NUMBER __________ PROPER WASTE CODES ________________
YARD INSTRUCTIONS: ___ NO LANDFILL CUSTOMER ____ MSDS ATTACHED ____ ANALYTICAL ATTACHED ___ PERFORM LABORATORY ANALYSIS
NOTES: ________________________________
A. GENERATOR INFORMATION:
Generator Name: ____________________________
Facility Address: __________________________
City: __________________ State: ______ Zip: ___
Customer Name: ____________________________
Customer Phone: ____________________________
Customer Fax: ____________________________
Generator USEPA/Federal ID #: ____________________________
Generator's S.I.C. Code (4 Digit): ____________________________

B. WASTE STREAM INFORMATION:
Name of the Waste: ____________________________
Original Process Generating Waste: ____________________________
Is it a Lab-Pack? _______ Yes X No If “Yes”, attached inventory sheet(s) and skip to Section H.
Is a representative sample provided? _______ Yes X No Is a MSDS attached? _______ Yes X No
Is there any Analytical attached? TCLP _______ Yes X No Other _______ Yes X No

C. GENERAL CHARACTERISTICS:
Color: Clean/Labour _______ Physical state @ 70°F _______ Liquid _______ 50% Liquid
Odor: Gasoline _______ Mild _______ Strong _______ None _______ % Sludge _______ % Solid _______ % Powder _______ % Other

PH: _______ <2.0 _______ 2.0 to 4.0 X _______ 4.0 to 10.0 _______ 10.0 to 12.5 _______ >12.5
Liquid Flash point: _______ <73 °F _______ 73 to 99 °F X _______ 100 to 139 °F _______ 140 to 200 °F _______ >200 °F _______ None
Specific Gravity _______ % Total Halogens _______

D. CHEMICAL COMPOSITION:
Constituents _______ Min% _______ Max% _______ Min% _______ Max%
Gasoline _______ 1 _______ 10 _______
Water _______
Sediment _______ 10 _______ 80 _______

E. OTHER WASTE STREAM INFORMATION:
Is this waste “Used Oil”? _______ Yes X No
If “Yes”, does the oil contain Polychlorinated Biphenyls? _______ Yes _______ No
If PCB’S are present, is the waste regulated by TSCA per 40 CFR 761? _______ Yes _______ No
Does the total halogen content exceed 1,000 ppm? _______ Yes _______ No
If “Yes”, can you identify the “chlorinated constituent” present in the oil? _______ Yes _______ No
Does the Waste have any of the following characteristics? (Please check all that apply)
______ Oxidizer _______ Organic Peroxide _______ Water Reactive _______ Air Reactive _______ Pyrophoric _______ Dioxin
______ Radioactive _______ Infectious _______ Pathogen _______ Carcinogen _______ Etiological _______ Cyanides
______ Explosive _______ Shock Sensitive _______ Undergo Hazardous Polymerization _______ Cylinder _______ Aerosols

PROFILE NUMBER: NRC 0013
F. OTHER WASTE STREAM INFORMATION CONTINUED:
Is this Waste subject to RCRA Subpart CC controls? (40 CFR 265 SUBPART CC)
If “No”, does the Waste meet the organic I.DR exemption for UHC”S? (40 CFR 268.48, 268.7)
If “No”, does the Waste contain <500/ppm volatile organic (VOC)? (40 CFR 265 SUBPART CC)
Does the Waste contain Class I or Class II ozone depleting substances?

G. WASTE CHARACTERIZATION:
Is this a Non-RCRA (California-Only) “Hazardous Waste” per 22 CCR 66264?
If “Yes”, please list all applicable State Waste Code(s):
Is this a RCRA “Hazardous Waste” per 40 CFR?
If “Yes”, please list all applicable EPA Waste Code(s):
Is this a “Universal Waste”?

H. DOT SHIPPING INFORMATION:
Is this a U.S. Department of Transportation (USDOT) Hazardous Material?
Proper Shipping Name per 49 CFR 172.101 Hazardous Materials Table:
Reportable Quantity (if any) ___ lbs
Hazard Class or Division No. 3 UN/NA#: UN1203 Packing Group: III
Is this a “Poisonous Inhalation Hazard”?
If “Yes”, please indicate Hazard Zone Zone A Zone B Zone C Zone D Other
List two primary hazardous constituents:

I. COMMENTS:

J. GENERATOR CERTIFICATION:
I hereby certify that the above and attached description is complete and accurate to the best of my knowledge and ability. No deliberate or willful omissions of composition or properties exist and that all known or suspected hazardous constituents have been disclosed. I also certify that the obtained sample is representative of the waste material described above and give GEM permission and consent to make amendment and corrections.

Name (print)
Signature
Date

THIS SPACE FOR GEM LLC APPROVALS DEPARTMENT ONLY

DATE RECEIVED / APPROVER’S NAME

PROCESS CODE PRICE UNIT OF MEASURE

PROFILE NUMBER PROPER WASTE CODES

YARD INSTRUCTIONS: NO LANDFILL CUSTOMER MSDS ATTACHED ANALYTICAL ATTACHED PERFORM LABORATORY ANALYSIS

NOTES:
LAND DISPOSAL RESTRICTION NOTIFICATION FORM 1

<table>
<thead>
<tr>
<th>PROFILE #</th>
<th>RCRA NON-REGULATED</th>
<th>RCRA WASTE CODES (List all that apply)</th>
<th>SUBCATEGORY (See Table II and Select Key # if applicable)</th>
<th>TREATABILITY GROUP Please check the applicable treatability group</th>
<th>REGULATED CONSTITUENTS FOR F001, F002, F003, F004, F005</th>
<th>UNDERLYING HAZARDOUS CONSTITUENTS FOR D001*, D002, D003*, D004-D0043</th>
</tr>
</thead>
<tbody>
<tr>
<td>961 962</td>
<td></td>
<td>b</td>
<td>d</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NRL 00013</td>
<td></td>
<td>b</td>
<td>d</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NRL 00012</td>
<td></td>
<td>b</td>
<td>d</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REGULATED CONSTITUENTS FOR F001, F002, F003, F004, F005 (for Column g)

5) Acetone
6) Benzene
7) n-Butyl Alcohol
8) Carbon Disulfide
9) Carbon Tetrachloride
10) Chlorobenzene
11) Cresols (o, m, or p isomers)
12) Cresylic Acid
13) Cyclohexanone
14) 1,2-Dichlorobenzene
15) Ethyl Acetate
16) Ethyl Benzene
17) Ethyl Ether
18) Isobutanol (Isobutyl Alcohol)
19) Methanol
20) Methylene Chloride
21) Methyl Ethyl Ketone
22) Ethyl Benzene
23) Nitrobenzene
24) Pyridine
25) Tetrachloroethylene
26) Toluene
27) 1,1,1-Trichloroethane
28) 1,1,2-Trichloroethane
29) 1,1,2-Trichloro-1,2,2-Trifluoroethane
30) Trichloroethylene
31) Trichlorofluoromethane
32) Xylene (Total)

I certify under penalty of law that the above information is accurate and true.

Signature: [Jack Bundini]
Print Name: [Jack Bundini]
Date: 06/21/10
<table>
<thead>
<tr>
<th>#</th>
<th>Constituent</th>
<th>#</th>
<th>Constituent</th>
<th>#</th>
<th>Constituent</th>
</tr>
</thead>
<tbody>
<tr>
<td>33</td>
<td>Acenaphthylene</td>
<td>105</td>
<td>1,1-Dichloroethane</td>
<td>177</td>
<td>5-Nitro-o-toluene</td>
</tr>
<tr>
<td>34</td>
<td>Acenaphthene</td>
<td>106</td>
<td>trans-1,2-Dichloroethylene</td>
<td>178</td>
<td>o-Nitrophenol</td>
</tr>
<tr>
<td>35</td>
<td>Ace tone</td>
<td>107</td>
<td>2,4-Dichlorophenol</td>
<td>179</td>
<td>p-Nitrophenol</td>
</tr>
<tr>
<td>36</td>
<td>Acetonitrile</td>
<td>108</td>
<td>2,6-Dichlorophenol</td>
<td>180</td>
<td>N-Nitrosodimethylamine</td>
</tr>
<tr>
<td>37</td>
<td>Acetophenone</td>
<td>109</td>
<td>2,4-Dichlorophenoxacyclic acid/2,4-D</td>
<td>181</td>
<td>N-Nitrosodimethylamine</td>
</tr>
<tr>
<td>38</td>
<td>2-Acetylaminofluorene</td>
<td>110</td>
<td>1,2-Dichloropropene</td>
<td>182</td>
<td>N-Nitrosodi-n-butylamine</td>
</tr>
<tr>
<td>39</td>
<td>Acrolein</td>
<td>111</td>
<td>cis-1,3-Dichloropropene</td>
<td>183</td>
<td>N-Nitrosodimethylamine</td>
</tr>
<tr>
<td>40</td>
<td>Acrylamide</td>
<td>112</td>
<td>trans-1,3-Dichloropropene</td>
<td>184</td>
<td>N-Nitrosodiethylethylamine</td>
</tr>
<tr>
<td>41</td>
<td>Acrylonitrile</td>
<td>113</td>
<td>Diethyl</td>
<td>185</td>
<td>N-Nitrosopiperidine</td>
</tr>
<tr>
<td>42</td>
<td>Aldrin</td>
<td>114</td>
<td>Dethyl phthalate</td>
<td>186</td>
<td>N-Nitrosopyrrolidone</td>
</tr>
<tr>
<td>43</td>
<td>4-Aminophenyl</td>
<td>115</td>
<td>p-Dimethylaminobenzobenzene</td>
<td>187</td>
<td>Parathion</td>
</tr>
<tr>
<td>44</td>
<td>Aniline</td>
<td>116</td>
<td>2,4-Dimethyl phenol</td>
<td>188</td>
<td>Parathion</td>
</tr>
<tr>
<td>45</td>
<td>Anthracene</td>
<td>117</td>
<td>Dimethyl phthalate</td>
<td>189</td>
<td>Pentachlorobenzene</td>
</tr>
<tr>
<td>46</td>
<td>Aromat</td>
<td>118</td>
<td>Di-n-butyl phthalate</td>
<td>190</td>
<td>Pentachlorobenzene-p-dioxins</td>
</tr>
<tr>
<td>47</td>
<td>alpha-BHC</td>
<td>119</td>
<td>1,4-Dinitrobenzene</td>
<td>191</td>
<td>Pentachlorobenzene-furans</td>
</tr>
<tr>
<td>48</td>
<td>beta-BHC</td>
<td>120</td>
<td>4,6-Dinitro-o-cresol</td>
<td>192</td>
<td>Pentachloroethane</td>
</tr>
<tr>
<td>49</td>
<td>delta-BHC</td>
<td>121</td>
<td>2,4-Dinitrophenol</td>
<td>193</td>
<td>Pentachloroethane-benzene</td>
</tr>
<tr>
<td>50</td>
<td>gamma-BHC</td>
<td>122</td>
<td>2,4-Dinitrotoluene</td>
<td>194</td>
<td>Pentachloroophenol</td>
</tr>
<tr>
<td>51</td>
<td>Benzene</td>
<td>123</td>
<td>2,6-Dinitrotoluene</td>
<td>195</td>
<td>Phenacetin</td>
</tr>
<tr>
<td>52</td>
<td>Benz(a)anthracene</td>
<td>124</td>
<td>Di-n-octyl phthalate</td>
<td>196</td>
<td>Phenanthrene</td>
</tr>
<tr>
<td>53</td>
<td>Benzal chloride</td>
<td>125</td>
<td>Di-n-propylnitrosamine</td>
<td>197</td>
<td>Phenol</td>
</tr>
<tr>
<td>54</td>
<td>Benz(b) fluoranthene</td>
<td>126</td>
<td>1,4-Dioxane</td>
<td>198</td>
<td>Phorate</td>
</tr>
<tr>
<td>55</td>
<td>Benz(e) fluoranthene</td>
<td>127</td>
<td>Diphenylamine</td>
<td>199</td>
<td>Phthalic acid</td>
</tr>
<tr>
<td>56</td>
<td>Benzo(a)pyrene</td>
<td>128</td>
<td>Diarylhydrazine</td>
<td>200</td>
<td>Phthalic anhydride</td>
</tr>
<tr>
<td>57</td>
<td>Benzo(b)pyrene</td>
<td>129</td>
<td>1,2-Diphenylhydrazine</td>
<td>201</td>
<td>Prolanide</td>
</tr>
<tr>
<td>58</td>
<td>Bromochloromethane</td>
<td>130</td>
<td>Diallyl</td>
<td>202</td>
<td>Pyrene</td>
</tr>
<tr>
<td>59</td>
<td>Bromomethane/Methyl bromide</td>
<td>131</td>
<td>Endosulfan I</td>
<td>203</td>
<td>Pyridine</td>
</tr>
<tr>
<td>60</td>
<td>4-Bromophenyl phenyl ether</td>
<td>132</td>
<td>Endosulfan II</td>
<td>204</td>
<td>Safrole</td>
</tr>
<tr>
<td>61</td>
<td>n-Butyl alcohol</td>
<td>133</td>
<td>Endosulfan sulfate</td>
<td>205</td>
<td>Silvex/2,4,5-TP</td>
</tr>
<tr>
<td>62</td>
<td>Butyl benzyl phthalate</td>
<td>134</td>
<td>Endrin</td>
<td>206</td>
<td>1,2,4,5-Tetrachlorobenzene</td>
</tr>
<tr>
<td>63</td>
<td>2-sec-Butyl-4,6-dimethoxypyridine /Dinoseb</td>
<td>135</td>
<td>Endrin aldehyde</td>
<td>207</td>
<td>Tetrachlorodi-benzene-p</td>
</tr>
<tr>
<td>64</td>
<td>Carbon tetrachloride</td>
<td>136</td>
<td>Ethyl acetate</td>
<td>208</td>
<td>Tetrafluoroalcohol</td>
</tr>
<tr>
<td>65</td>
<td>Carbon tetrachloride</td>
<td>137</td>
<td>Ethyl benzene</td>
<td>209</td>
<td>1,1,1,2-Tetrachloroethane</td>
</tr>
<tr>
<td>66</td>
<td>Chloroamine (alpha and gamma isomers)</td>
<td>138</td>
<td>Ethyl 2-amino/propionitrite</td>
<td>210</td>
<td>1,1,2,2-Tetrachloroethane</td>
</tr>
<tr>
<td>67</td>
<td>Chloro(oxy)amine</td>
<td>139</td>
<td>Ethyl ether</td>
<td>211</td>
<td>Tetrachloroethylene</td>
</tr>
<tr>
<td>68</td>
<td>Chlorobenzene</td>
<td>140</td>
<td>Ethyl methylacrylate</td>
<td>212</td>
<td>2,3,4,6-Tetrachlorophenol</td>
</tr>
<tr>
<td>69</td>
<td>Chlorobenzilate</td>
<td>141</td>
<td>Ethyl methacrylate</td>
<td>213</td>
<td>Toluene</td>
</tr>
<tr>
<td>70</td>
<td>2-Chloro-1,3-butadiene</td>
<td>142</td>
<td>Ethylene oxide</td>
<td>214</td>
<td>Toxaphene</td>
</tr>
<tr>
<td>71</td>
<td>Chlorodibromomethane</td>
<td>143</td>
<td>Farnphur</td>
<td>215</td>
<td>Trichloroacetic/Bromoform</td>
</tr>
<tr>
<td>72</td>
<td>Chloroethane</td>
<td>144</td>
<td>Fluorenone</td>
<td>216</td>
<td>1,2,4-Trichlorobenzene</td>
</tr>
<tr>
<td>73</td>
<td>bis(2-Chloroethoxy) methane</td>
<td>145</td>
<td>Fluorene</td>
<td>217</td>
<td>1,2,3-Trichloroethane</td>
</tr>
<tr>
<td>74</td>
<td>bis(2-Chloroethyl) ether</td>
<td>146</td>
<td>Hexachloro</td>
<td>218</td>
<td>1,2,3-Trichloroethane</td>
</tr>
<tr>
<td>75</td>
<td>Chlorofor m</td>
<td>147</td>
<td>Hexachlorobenzene</td>
<td>219</td>
<td>Trichloroethene</td>
</tr>
<tr>
<td>76</td>
<td>bis(2-Chloroisopropyl)ether</td>
<td>148</td>
<td>Hexachlorobutadiene</td>
<td>220</td>
<td>Trichloromethanol/fluoromethane</td>
</tr>
<tr>
<td>77</td>
<td>p-Chloro-m-cresol</td>
<td>149</td>
<td>Hexachlorobutadiene</td>
<td>221</td>
<td>2,4,5-Trichlorophenol</td>
</tr>
<tr>
<td>78</td>
<td>2-Chloroethyl vinyl ether</td>
<td>150</td>
<td>Hexachlorocyclopentadiene</td>
<td>222</td>
<td>2,4,6-Trichlorophenol</td>
</tr>
<tr>
<td>79</td>
<td>Chloromethane/Methyl chloride</td>
<td>151</td>
<td>Hexachlorobenzene-p-dioxins & furans</td>
<td>223</td>
<td>2,4,5-Trichlorophenoxacyclic acid/2,4,5T</td>
</tr>
<tr>
<td>80</td>
<td>2-Chloronaphthalene</td>
<td>152</td>
<td>Hexachloroethane</td>
<td>224</td>
<td>1,2,3-Trichloropropane</td>
</tr>
<tr>
<td>81</td>
<td>2-Chlorophenol</td>
<td>153</td>
<td>Hexachloropropene</td>
<td>225</td>
<td>1,2,3-Trichloro-1,2,2-trifluoroethan</td>
</tr>
<tr>
<td>82</td>
<td>3-Chloropropylene</td>
<td>154</td>
<td>Indene (1,2,3-c.d) pyrene</td>
<td>226</td>
<td>tris(2,3-Dibromopropyl) phosphate</td>
</tr>
<tr>
<td>83</td>
<td>Chrysene</td>
<td>155</td>
<td>Indometh</td>
<td>227</td>
<td>Vinyl chloride</td>
</tr>
<tr>
<td>84</td>
<td>o-Cresol</td>
<td>156</td>
<td>Isobutyl alcohol</td>
<td>228</td>
<td>Xylene/Total</td>
</tr>
<tr>
<td>85</td>
<td>m-Cresol</td>
<td>157</td>
<td>Isodrin</td>
<td>229</td>
<td>Antimony</td>
</tr>
<tr>
<td>86</td>
<td>p-Cresol</td>
<td>158</td>
<td>Isosafrole</td>
<td>230</td>
<td>Arsenic</td>
</tr>
<tr>
<td>87</td>
<td>Cyclohexanone</td>
<td>159</td>
<td>Kepone</td>
<td>231</td>
<td>Barium</td>
</tr>
<tr>
<td>88</td>
<td>p,p'-DDD</td>
<td>160</td>
<td>Methacrylonitrile</td>
<td>232</td>
<td>Beryllium</td>
</tr>
<tr>
<td>89</td>
<td>p,p'-DDT</td>
<td>161</td>
<td>Methyl</td>
<td>233</td>
<td>Cadmium</td>
</tr>
<tr>
<td>90</td>
<td>p,p'-DDE</td>
<td>162</td>
<td>Methylpyrene</td>
<td>234</td>
<td>Chromium (Total)</td>
</tr>
<tr>
<td>91</td>
<td>p,p'-DDE</td>
<td>163</td>
<td>Methoxychlor</td>
<td>235</td>
<td>Cyanides (Total)</td>
</tr>
<tr>
<td>92</td>
<td>p,p'-DDT</td>
<td>164</td>
<td>3-Methylcholanthrene</td>
<td>236</td>
<td>Cyanides (Aminable)</td>
</tr>
<tr>
<td>93</td>
<td>p,p'-DDT</td>
<td>165</td>
<td>4,4-Methylene bis(2-chloroaniline)</td>
<td>237</td>
<td>Fluoride</td>
</tr>
<tr>
<td>94</td>
<td>Dibenz[a]anthracene</td>
<td>166</td>
<td>Methylene chloride</td>
<td>238</td>
<td>Lead</td>
</tr>
<tr>
<td>95</td>
<td>Dibenz[a]pyrene</td>
<td>167</td>
<td>Methyl ethyl ketone</td>
<td>239</td>
<td>Mercury--Nonwastewater from Retort</td>
</tr>
<tr>
<td>96</td>
<td>1,2-Dibromo-3-chloropropane</td>
<td>168</td>
<td>Methyl isobutyl ketone</td>
<td>240</td>
<td>Mercury--All Others</td>
</tr>
<tr>
<td>97</td>
<td>1,2-Dibromoethane/Ethylene dibromide</td>
<td>169</td>
<td>Methyl methacrylate</td>
<td>241</td>
<td>Nickel</td>
</tr>
<tr>
<td>98</td>
<td>Dibromomethane</td>
<td>170</td>
<td>Methyl methanol/lutetate</td>
<td>242</td>
<td>Selenium</td>
</tr>
<tr>
<td>99</td>
<td>m-Dichlorobenzene</td>
<td>171</td>
<td>Methyl parathion</td>
<td>243</td>
<td>Silver</td>
</tr>
<tr>
<td>100</td>
<td>o-Dichlorobenzene</td>
<td>172</td>
<td>Naphthalene</td>
<td>244</td>
<td>Sulfide</td>
</tr>
<tr>
<td>101</td>
<td>p-Dichlorobenzene</td>
<td>173</td>
<td>2-Naphthylamine</td>
<td>245</td>
<td>Thallium</td>
</tr>
<tr>
<td>102</td>
<td>Dichlorodifluoromethane</td>
<td>174</td>
<td>o-Nitroaniline</td>
<td>246</td>
<td>Vanadium</td>
</tr>
<tr>
<td>103</td>
<td>1,1-Dichloroethane</td>
<td>175</td>
<td>p-Nitroaniline</td>
<td>247</td>
<td>Zinc</td>
</tr>
</tbody>
</table>
TABLE II

The follow waste codes have subcategories and the appropriate key number must be selected and placed in Column d on Form No. 1. Please refer to 40 CFR 268 for exact wording of subcategories.

<table>
<thead>
<tr>
<th>WASTE CODES</th>
<th>KEY NUMBER</th>
<th>SUBCATEGORY</th>
</tr>
</thead>
<tbody>
<tr>
<td>D001</td>
<td>1</td>
<td>High TOC ignitable liquids.</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Low TOC ignitable liquids managed in CWA/CWA-equivalent/Class 1 SDWA systems</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Low TOC ignitable managed in non-CWA/non-CWA equivalent/non-Class 1 SDWA systems</td>
</tr>
<tr>
<td>D002</td>
<td>4</td>
<td>Corrosive waste managed in non-CWA/non-CWA equivalent/non-Class 1 SDWA systems</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Corrosive waste managed in CWA/CWA equivalent/Class 1 SDWA systems</td>
</tr>
<tr>
<td>D003</td>
<td>6</td>
<td>Reactive Sulfides.</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>Other Reactives.</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>Water Reactives.</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>Reactive Cyanide.</td>
</tr>
<tr>
<td>D006</td>
<td>10</td>
<td>Characteristic for Cd based on extraction procedure.</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>Cadmium containing batteries.</td>
</tr>
<tr>
<td>D008</td>
<td>12</td>
<td>Characteristic for Pb based on extraction procedure.</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>Lead Acid Batteries.</td>
</tr>
<tr>
<td>D009</td>
<td>14</td>
<td>Low Mercury. (< 260 ppm total Hg)</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>High Mercury. (> 260 ppm total Hg)</td>
</tr>
<tr>
<td>F003</td>
<td>16</td>
<td>Wastes that contain only one or more of the following solvents: carbon disulfide, cyclohexanone, and/or methanol.</td>
</tr>
<tr>
<td>F005</td>
<td>17</td>
<td>Contains only 2-Nitropropane.</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>Contains only 2-Ethoxyethanol.</td>
</tr>
<tr>
<td>K006</td>
<td>21</td>
<td>Anhydrous.</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>Hydrated.</td>
</tr>
<tr>
<td>U151</td>
<td>23</td>
<td>Non-wastewaters that contain > 260 mg/kg total mercury.</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>All U151 (mercury) Wastewaters.</td>
</tr>
<tr>
<td>K071</td>
<td>25</td>
<td>Non-wastewaters that are residues from RMERC.</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>Non-wastewaters that are not residues from RMERC.</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>All K071 Wastewaters.</td>
</tr>
<tr>
<td>P047</td>
<td>28</td>
<td>4,6-Dinitro-o-cresol.</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>4,6-Dinitro-o-cresol salts.</td>
</tr>
<tr>
<td>P065</td>
<td>30</td>
<td>Non-wastewaters, not incinerator or RMERC residues.</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>Non-wastewaters from RMERC w/ less than 260 ppm Hg.</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>Non-wastewaters from incinerator residues w/ less than 260 ppm Hg.</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>All P065 wastewaters</td>
</tr>
<tr>
<td>P092</td>
<td>34</td>
<td>Non-wastewaters, not incinerator or RMERC residues.</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>Non-wastewaters from RMERC w/ less than 260 ppm Hg.</td>
</tr>
<tr>
<td></td>
<td>36</td>
<td>Non-wastewaters from incinerator residues w/ less than 260 ppm Hg.</td>
</tr>
<tr>
<td></td>
<td>37</td>
<td>All P092 wastewaters</td>
</tr>
<tr>
<td>U240</td>
<td>38</td>
<td>2,4-D (2,4-Dichlorophenoxyacetic Acid) salts and esters.</td>
</tr>
<tr>
<td></td>
<td>39</td>
<td>2,4-D (2,4-Dichlorophenoxyacetic Acid) salts and esters.</td>
</tr>
</tbody>
</table>
STRAIGHT BILL OF LADING ORIGINAL - NOT NEGOTIABLE

NRC Environmental Services Inc.

(Name of Carrier)

TO: Arcata Scrap & Salvage

CONSIGNEE: Arcata Scrap & Salvage

FROM: Yunok Tribe

Shippers

Street: 142 S E St

Street: Hwy 101

Destination: Arcata, CA

Zip Code: 95521

Origin: Weitchpec, CA

Zip Code: 95546

Route: 707.822.4881

No. Shipping Marks: 1

Kind of Packaging, Description of Articles, Special Marks and Instructions: Cleared Underground Storage Tank 300 lbs for Recycling

Weight: (Subject to Correction) 300 lbs

Vehicle Number:

Rate:

CHARGES:

Freight Charges:

Freight Prepaid

Check Box if Charges to be collect

TOTAL CHARGES: $0

REMARKS:

REPRESENTS, subject to the provisions and terms in effect on the date of issue of this Bill of Lading, the property described above is apparent good order, except as noted (inconsistencies and condition of contents of packages unknown). The carrier shall be deemed to have actual knowledge of the condition of the property as delivered to the consignee, and the consignee shall inspect and hold damages to the property if not discovered at the time of delivery. If the carrier shall not deliver the property at the time and place of delivery specified, the carrier shall not be liable for any damages resulting therefrom.

Shippers hereby certify that he is familiar with all of the terms and conditions in the governing classification and the said terms and conditions are hereby agreed to by the shipper and accepted for himself and his assigns.

SIGNATURES:

SHIPPER: Jack Bondini

CARRIER: NRC Env. Service Inc. (NRCES)

PER: Jack Bondini

DATED: 6-21-10

*Mark with X to designate Hazardous Material as defined in Title 49 of the Code of Federal Regulations.
UNIFIED PROGRAM CONSOLIDATED FORM
HAZARDOUS WASTE TANK CLOSURE CERTIFICATION

I. FACILITY IDENTIFICATION

BUSINESS NAME (Name or FACILITY NAME or DBA – Doing Business As)

FACILITY ID#

TANK OWNER NAME

Yurok Tribe

TANK OWNER ADDRESS

23001 St. Hwy 96 Hoopa CA

TANK OWNER CITY Hoopa

II. TANK CLOSURE INFORMATION

<table>
<thead>
<tr>
<th>TANK INTERIOR ATMOSPHERE READINGS</th>
<th>Concentration of Flammable Vapor</th>
<th>Concentration of Oxygen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tank ID #</td>
<td>Top</td>
<td>Center</td>
</tr>
<tr>
<td>1</td>
<td>745</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>798</td>
<td>140%</td>
</tr>
<tr>
<td>3</td>
<td>751</td>
<td>152c</td>
</tr>
</tbody>
</table>

III. CERTIFICATION

On examination of the tank, I certify the tank is visibly free from product, sludge, scale (thin, flaky residue of tank contents), rust, and debris. I further certify that the information provided herein is true and accurate to the best of my knowledge.

SIGNATURE OF CERTIFIER

STATUS OR AFFILIATION OF CERTIFYING PERSON

Certifier is a representative of the CUPA, authorized agency, or LIA:

[] Yes [] No

Name of CUPA, authorized agency, or LIA:

If certifier is other than CUPA / LIA check appropriate box below:

[] a. Certified Industrial Hygienist (CIH)
[] b. Certified Safety Professional (CSP)
[] c. Certified Marine Chemist (CMC)
[] d. Registered Environmental Health Specialist (REHS)
[] e. Professional Engineer (PE)
[] f. Class II Registered Environmental Assessor
[] g. Contractors' State License Board licensed contractor (with hazardous substance removal certification)

DATE

CERTIFICATION TIME

CERTIFIER'S TANK MANAGEMENT INSTRUCTIONS FOR SCRAP DEALER, DISPOSAL FACILITY, ETC.

[] Wear appropriate PPE to protect from sharp edges.
[] Inspect tank interior atmosphere before any hot cutting of the tank.

A copy of this certificate shall accompany the tank to the recycling / disposal facility and be provided to the CUPA. If there is no CUPA, copies shall be submitted to the LIA and authorized agency, owner / operator of the tank system, removal contractor, and the recycling / disposal facility.

UPCF (12/99)